Классы планет
Nov. 3rd, 2017 02:33 pm![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)
Общепринятой законченной классификации планет пока не существует, поэтому описывать можно только принятые классы планет, открытых к настоящему времени в Солнечной системе и за ее пределами.
Для начала - планеты земной группы: миниземли и суперземли.
Миниземля - планета с твердой поверхностью, сравнимая с Землей по массе или меньшая ее. Примеры - Земля, Марс, Венера, Меркурий, Кеплер-20e, Кеплер-20f.
Иногда выделяют миниземли - планеты с массой, существенно существенно меньшей массы Земли (в Солнечной системе это - Меркурий и Марс) и земли (по массе сравнимые с Землей) - но такое разделение не является общепринятым. В таком случае в Солнечной системе есть две земли - Венера и Земля - и две миниземли - Меркурий и Марс.
Суперземля - планета с твердой поверхностью, заметно превышающая Землю. Считается, что масса суперземли находится в пределах от трех до семи-десяти масс Земли. При большей массе планета захватывает при своем формировании летучие вещества из протопланетного диска и переходит в класс более крупных планет - ледяных гигантов, потому что у нее появляется протяженная газовая оболочка, под давлением формирующая мощный ледяной слой. Подкласс горячих суперземель составляют планеты, близкие к своим звездам и имеющие в результате высокую температуру поверхности (от семисот градусов Кельвина). В Солнечной системе суперземель нет.
Вариант планет такого типа - хтоническая планета - бывший горячий газовый или ледяной гигант, под влиянием излучения своей звезды потерявший газовую оболочку и сохранивший лишь каменное или металлическое ядро. Скорее всего, хтоническими планетами являются две планеты субкарлика KOI-55, сбросившего свою оболочку - KOI-55b и KOI-55c. Они отличаются феноменальными характеристиками - удалены от центра своей звезды на 900 тысяч (!!! Всего в два с половиной раза дальше, чем Луна от Земли!) и 1,15 миллиона километров, имеют периоды обращения 5 часов 45 минут и 8 часов 15 минут, и температура подзвездной точки ближней из них превосходит девять тысяч градусов...
В зависимости от химического состава, планеты земной группы могут быть классифицированы как силикатные планеты, железные планеты (пример - суперземля Kepler-10b, имеющая массу 4,5 земной и плотность выше, чем у железа), углеродные планеты, планеты-океаны.
Планеты с массой, существенно большей земной, но недостаточной для появления в их центре металлического водорода под действием давления вышележащих слоев классифицируются как ледяные гиганты, которые иногда называют "нептунами" (масса - ориентировочно от десяти до шестидесяти масс Земли). Они заметно отличаются от планет земной группы, потому что их основную массу составляют так называемые льды - метановые, аммиачные или водяные горячие пластичные массы, находящиеся под высоким (сотни тысяч и миллионы атмосфер) давлением. Типичные представители ледяных гигантов - Уран и Нептун. Ледяные гиганты тоже в зависимости от положения относительно звезды могут быть горячими ("горячие нептуны" ).
Еще более крупные планеты классифицируются как газовые гиганты или "юпитеры". При такой массе планета эффективно захватывает и удерживает своим тяготением легкие летучие газы, и поэтому основная масса этих планет приходится на водород и гелий, которые не только формируют атмосферу, но и в основном составляют недра планеты. Эти газы сжаты огромным давлением до жидкого, а в центральных областях планеты - до твердого металлического состояния. Примеры - Юпитер, Сатурн. С большой долей вероятности в центре таких планет идут термоядерные реакции, только их эффективность невелика и не играет существенной роли в тепловом балансе.
Среди "горячих юпитеров " можно выделить интересный подкласс рыхлых планет - небольших горячих юпитеров массой, примерно равной массе нашего Юпитера или превосходящих ее не более, чем в два раза, очень близких к своей звезде, имеющих высокую температуру (тысячи градусов) и поэтому из-за испарения очень протяженных. Пример - WASP-17b массой 0,49 массы Юпитера, диаметром почти в два раза большим и плотностью как у пенопласта. При большей массе гравитация планеты не дает газам "убегать" на большое расстояние и образовывать протяженную атмосферу.
Самые крупные газовые гиганты могут оказаться субкоричневыми карликами, то есть, образованиями, по виду схожими с планетами, но образованными как звезда - коллапсом газового облака.
Начиная с массы 12,57 массы Юпитера, газовые гиганты уже считаются коричневыми карликами - в них безусловно идут термоядерные реакции с заметной интенсивностью, которой, однако же, не хватает для компенсации охлаждения.
При массе, превосходящей Юпитер ориентировочно в восемьдесят раз (0,0767 массы Солнца), интенсивность термоядерной реакции достаточна для компенсации охлаждения - и такой объект является звездой (красный карлик класса М).
Особняком стоят так называемые гелиевые планеты - планеты-гиганты, сформированные из гелия, потерянного белым карликом. Такие планеты являются в значительной степени плодом теоретических представлений, хотя планета GD 66b, обращающаяся вокруг белого карлика GD 66, является кандидатом в такие объекты.
Следует обратить внимание на интересное обстоятельство: "нормальные" планеты массой более 12,57 масс Юпитера можно отнести к коричневым карликам, потому что температура и давление в них оказываются достаточными для протекания термоядерных реакций синтеза гелия из дейтерия. Но гелиевые планеты дейтерия изначально не содержат, поэтому вступать в ядерную реакцию в них просто нечему - ядерные реакции в центральной части таких планет не могут начаться ни при какой, даже весьма большой мыслимой массе. Даже если представить себе, что масса такого объекта превысит 7,67% массы Солнца, он при этом не будет являться звездой, поскольку "термоядерного топлива" в нем нет, и излучать энергию нечему - по свойствам он будет соответствовать белому карлику. Так что в каком-то смысле гелиевые планеты - это сверхмалые белые карлики.
Для начала - планеты земной группы: миниземли и суперземли.
Миниземля - планета с твердой поверхностью, сравнимая с Землей по массе или меньшая ее. Примеры - Земля, Марс, Венера, Меркурий, Кеплер-20e, Кеплер-20f.
Иногда выделяют миниземли - планеты с массой, существенно существенно меньшей массы Земли (в Солнечной системе это - Меркурий и Марс) и земли (по массе сравнимые с Землей) - но такое разделение не является общепринятым. В таком случае в Солнечной системе есть две земли - Венера и Земля - и две миниземли - Меркурий и Марс.
Суперземля - планета с твердой поверхностью, заметно превышающая Землю. Считается, что масса суперземли находится в пределах от трех до семи-десяти масс Земли. При большей массе планета захватывает при своем формировании летучие вещества из протопланетного диска и переходит в класс более крупных планет - ледяных гигантов, потому что у нее появляется протяженная газовая оболочка, под давлением формирующая мощный ледяной слой. Подкласс горячих суперземель составляют планеты, близкие к своим звездам и имеющие в результате высокую температуру поверхности (от семисот градусов Кельвина). В Солнечной системе суперземель нет.
Вариант планет такого типа - хтоническая планета - бывший горячий газовый или ледяной гигант, под влиянием излучения своей звезды потерявший газовую оболочку и сохранивший лишь каменное или металлическое ядро. Скорее всего, хтоническими планетами являются две планеты субкарлика KOI-55, сбросившего свою оболочку - KOI-55b и KOI-55c. Они отличаются феноменальными характеристиками - удалены от центра своей звезды на 900 тысяч (!!! Всего в два с половиной раза дальше, чем Луна от Земли!) и 1,15 миллиона километров, имеют периоды обращения 5 часов 45 минут и 8 часов 15 минут, и температура подзвездной точки ближней из них превосходит девять тысяч градусов...
В зависимости от химического состава, планеты земной группы могут быть классифицированы как силикатные планеты, железные планеты (пример - суперземля Kepler-10b, имеющая массу 4,5 земной и плотность выше, чем у железа), углеродные планеты, планеты-океаны.
Планеты с массой, существенно большей земной, но недостаточной для появления в их центре металлического водорода под действием давления вышележащих слоев классифицируются как ледяные гиганты, которые иногда называют "нептунами" (масса - ориентировочно от десяти до шестидесяти масс Земли). Они заметно отличаются от планет земной группы, потому что их основную массу составляют так называемые льды - метановые, аммиачные или водяные горячие пластичные массы, находящиеся под высоким (сотни тысяч и миллионы атмосфер) давлением. Типичные представители ледяных гигантов - Уран и Нептун. Ледяные гиганты тоже в зависимости от положения относительно звезды могут быть горячими ("горячие нептуны" ).
Еще более крупные планеты классифицируются как газовые гиганты или "юпитеры". При такой массе планета эффективно захватывает и удерживает своим тяготением легкие летучие газы, и поэтому основная масса этих планет приходится на водород и гелий, которые не только формируют атмосферу, но и в основном составляют недра планеты. Эти газы сжаты огромным давлением до жидкого, а в центральных областях планеты - до твердого металлического состояния. Примеры - Юпитер, Сатурн. С большой долей вероятности в центре таких планет идут термоядерные реакции, только их эффективность невелика и не играет существенной роли в тепловом балансе.
Среди "горячих юпитеров " можно выделить интересный подкласс рыхлых планет - небольших горячих юпитеров массой, примерно равной массе нашего Юпитера или превосходящих ее не более, чем в два раза, очень близких к своей звезде, имеющих высокую температуру (тысячи градусов) и поэтому из-за испарения очень протяженных. Пример - WASP-17b массой 0,49 массы Юпитера, диаметром почти в два раза большим и плотностью как у пенопласта. При большей массе гравитация планеты не дает газам "убегать" на большое расстояние и образовывать протяженную атмосферу.
Самые крупные газовые гиганты могут оказаться субкоричневыми карликами, то есть, образованиями, по виду схожими с планетами, но образованными как звезда - коллапсом газового облака.
Начиная с массы 12,57 массы Юпитера, газовые гиганты уже считаются коричневыми карликами - в них безусловно идут термоядерные реакции с заметной интенсивностью, которой, однако же, не хватает для компенсации охлаждения.
При массе, превосходящей Юпитер ориентировочно в восемьдесят раз (0,0767 массы Солнца), интенсивность термоядерной реакции достаточна для компенсации охлаждения - и такой объект является звездой (красный карлик класса М).
Особняком стоят так называемые гелиевые планеты - планеты-гиганты, сформированные из гелия, потерянного белым карликом. Такие планеты являются в значительной степени плодом теоретических представлений, хотя планета GD 66b, обращающаяся вокруг белого карлика GD 66, является кандидатом в такие объекты.
Следует обратить внимание на интересное обстоятельство: "нормальные" планеты массой более 12,57 масс Юпитера можно отнести к коричневым карликам, потому что температура и давление в них оказываются достаточными для протекания термоядерных реакций синтеза гелия из дейтерия. Но гелиевые планеты дейтерия изначально не содержат, поэтому вступать в ядерную реакцию в них просто нечему - ядерные реакции в центральной части таких планет не могут начаться ни при какой, даже весьма большой мыслимой массе. Даже если представить себе, что масса такого объекта превысит 7,67% массы Солнца, он при этом не будет являться звездой, поскольку "термоядерного топлива" в нем нет, и излучать энергию нечему - по свойствам он будет соответствовать белому карлику. Так что в каком-то смысле гелиевые планеты - это сверхмалые белые карлики.